# Rubies in the XMM Slew Survey

# ewton

#### Richard, Saxton (ESAC)

Andy Read, Rhaana Starling (LU) Stefanie Komossa (MPiFR) Norade, Jurgen Schmitt (Hamburg Beate Stelzer (Tuebingen) Michael Freyberg (MPE), gyue Li, Weimin Yuan (NAOC), Achille Nucita (INAF), Nora Strotjohann (DESY)

### Slew – basic details



Slews are on average, 70 degs long and 0.5 degs wide.

Data is taken with the EPIC-pn camera, *Medium* filter and the observing mode of the previous observation

Produce sub-images of ~1 deg<sup>2</sup> in 0.2-2, 2-12 and 0.2-12 keV bands (soft, hard and full bands)



Positional error: 7.3" (1-sig), 11.3" (90%)

### XMMSL2 sky coverage

XMMSL2 – released March 2017 (2114 slews up until end of 2014) 65000 deg<sup>2</sup>, 29393 detections and 23000 individual sources

85% of sky covered at least once

0.2 – 2 keV band :  $F_{0.2-2}$ >6x10<sup>-13</sup> cgs 2 – 12 keV band :  $F_{2-12}$ >4x10<sup>-12</sup> cgs

# **Cygnus Loop**



ROSAT

XMM-Newton Slew  $\sim \frac{1}{2}$  hour observing time !

### Coverage / Depth



 $F_{0.2-2} \ge 6x10^{-13} \text{ ergs/s/cm2}$ 

 $F_2-10 \ge 4x10^{-12} \text{ ergs/s/cm2}$ 



#### Circle size $\equiv$ source flux

#### 75% of sources are identified



# Population full

#### Slew population

| 12000 |      |     |        |         |        |     |    |     |        |     |   |
|-------|------|-----|--------|---------|--------|-----|----|-----|--------|-----|---|
| 10000 |      |     |        |         |        |     |    |     |        |     |   |
| 8000  |      |     |        |         |        |     |    |     |        | _   |   |
| 6000  |      |     |        |         |        |     |    |     |        | _   | _ |
| 4000  |      |     |        |         |        |     |    |     |        | _   | _ |
| 2000  |      |     |        |         |        |     |    |     |        | _   | _ |
| 0     |      |     |        |         |        |     |    |     |        |     |   |
|       | NONA | SNR | PULSAR | CLUSTER | BINARY | ` 3 | t, | TAR | GALAXY | ACH |   |

### **Clusters of galaxies**



>500 clusters of galaxies detected

### **Stellar population**



X-corr of XMMSL2 with Gaia DR1

Black points – src with >17 XMMSL2 counts

Stars with known parallax distance. Lines denote main sequence

Freund et al. 2018

The XMMSL2 catalog contains ~25% stars.

Most of the stellar XMMSL2 sources are late-type dwarfs with an outer convection zone. Only about 75% of the XMMSL2 sources have a RASS identification.

Hence, a substantial portion of the stellar XMMSL2 sources are previously unknown X-ray sources caught in an active or flaring state.

#### A puzzling M dwarf among the XMMSL transients (Stelzer et al., in prep.)





→ EXCEPTIONALLY STRONG ACTIVITY DISCOVERED IN A VERY OLD M DWARF

### Point sources: variability



Form sample of 318 objects with XMM\_slew / RASS flux ratio>10 And >5 counts in XMM slew.

### Population of transients



Li et al. in prep

### Transient population stars



Li et al. in prep

On average variable stellar population consists of lower mass, cooler stars, usually K or M dwarves

### Novae





Read et al. 2008

### Nova - XMMSL1 0630-60



XMMSL1 J063045.9-603110 – 32 c/s (Dec 2011) with very faint optical counterpart

Mainetti et al. 2016 suggested it as a TDE based on subsequent X-ray LC and soft spectrum

Oliviera et al. 2017 – optical spectrum showing Nova in nebula phase.

### Supernovae



Nucita et al. 2017

Also SN2010jl, SN2006jd similar luminosity but much harder X-ray spectrum, lasted for several years SN 2015J - Type IIn

 $L_{\chi}$ ~5x10<sup>41</sup> ergs/s

#### $L_{X} \sim 2x10^{40} \text{ ergs/s}$

Some SN exploding into dense environments show delayed high-L, X-ray emission relative to Optical.

 $L_{\chi} \sim 5 \times 10^{41} \text{ ergs/s}, \text{ kT} \sim 200 \text{ eV}$ 

### AGN



Probing principally 10<sup>42</sup><Lx<10<sup>46</sup> 0.03<z<2.0

### AGN - hard-band (extragalactic) luminosity function



2-10 keV AGN luminosity function

#### Model of Gilli et al. 2007

Solid line = AGN-only Dashed=AGN+clusters

Blue from 2XMM Red from XMM slew Green from HEAO-1/A2

Slew number counts fit well with extension from 2XMM

Clusters under-represented – due to insensitivity of current detection algorithm?

# Flares from AGN



Seyfert 2 - line widths are <200 km/s - z=0.01816

### Flares from AGN - GSN 069



July 2010 - XMM slew source found with  $F_{0.2-2keV} = 3E-12 \text{ ergs/s/cm}^{-2}$ 

Very soft spectrum (15 photons) kT~70 eV

### AGN – high variability



Sample of 24 galaxies with >10 variability from RASS



### TDE – fast follow-up







XMMSL1 1446+68



### Unusual TDE light-curve: SDSS J1201+30



Fast variability in early phase. SDSS 1201+30, factor 50 drop in flux within 1 week

Saxton et al. 2012

What causes the flux drop?

### SDSS J1201+30 : binary black-hole TDE ?



Liu, Li & Komossa 2014

Dip can be reproduced by a binary with M\_BH=10<sup>7</sup>, a secondary with M\_BH=8x10<sup>5</sup> and separation of 6 mpc, orbital period  $T_b \le few 100 days$ 

# Pericentre of secondary black hole



### Binary black-hole TDE model

#### Vigneron et al. 2018





Light curve of TDE occuring in plane of binary orbit

perpendicular to BBH orbit

### Near real-time analysis

|                            |            |         |      |      |        | с    | omparis       | XMM-<br>son w                 | Newt<br>ith R(<br>0.2          | on Slew<br>DSAT sou<br>- 2.0 keV           | Survey<br>urce catal                   | ogues            |               |                   |                            |         |
|----------------------------|------------|---------|------|------|--------|------|---------------|-------------------------------|--------------------------------|--------------------------------------------|----------------------------------------|------------------|---------------|-------------------|----------------------------|---------|
| 921                        | 5900005    | 9216100 | 004  | 9216 | 300002 | 921  | 5300003       | 9216                          | 40000                          | 3 921650                                   | 0002 921                               | 6700002          | 92167000      | 921670000         | 4 9216800003               |         |
| 521                        | 0000004    | 5210500 | 002  | 5210 | 900004 | 9217 | 000002        | 5217                          | Slew:                          | 92159000                                   | 05                                     | 7200004          | 921720000     | 5 521770000       | 2 9217700003               |         |
|                            |            |         |      |      |        |      | E)<br>E)<br>A | cposure<br>cposure<br>nalysis | start ti<br>stop ti<br>time: T | me:02:48:06<br>me:04:24:06<br>ue Oct 4 01: | 2011-09-24<br>2011-09-24<br>43:39 2011 |                  |               |                   |                            |         |
|                            |            |         |      |      |        |      |               |                               | Go to t                        | the Main pag                               | ge                                     |                  |               |                   |                            |         |
|                            |            |         |      |      |        |      | С             | lick for                      | a printa                       | able version                               | of the table                           |                  |               |                   |                            |         |
|                            |            |         |      |      |        |      | R             | esults f                      | or all lis                     | ted slews - /                              | ASCII format                           |                  |               |                   |                            |         |
|                            |            |         |      |      |        | His  | togram of     | the exp                       | pected                         | range of rati                              | os :XMM Nev                            | vton/Rosa        | t             |                   |                            |         |
|                            |            |         |      | _    |        | Gre  | en: XMM I     | Newton                        | data. B                        | rown: ROSA                                 | I and compa                            | arison data      | a.            |                   |                            |         |
| XMMNewton_NAME             | RA         | DEC     | SCTS | EXT  | DET_ML | RATE | RATE_err      | BG<br>(e-4)                   | R_Cat                          | RA                                         | DEC                                    | OFFSET<br>arcmin | FLUX<br>RATIO | FLUX<br>RATIO_err | NAME                       | XMM_IMA |
| XMMSL1 J162145.8+64053     | 3 245.4408 | 64.0927 | 7.0  | 0    | 24.3   | 0.93 | 0.27          | 3.99                          | b                              | 16 21<br>46.70                             | +64 05 31.5                            | 0.11             | 1.61          | 0.51              | 1RXS J162146.7+640531      | Image   |
| XMMSL1<br>J171411.6+524937 | 258.5484   | 52.8270 | 6.1  | 0    | 11.6   | 0.63 | 0.22          | 10.63                         | f                              | 17 14<br>12.10                             | +52 49 35.0                            | 0.08             | 3.52          | 1.49              | 1RXS J171412.1+524935      | Image   |
| XMMSL1<br>J174558.3+391922 | 266.4928   | 39.3230 | 6.3  | 0    | 19.1   | 0.76 | 0.25          | 6.63                          | f                              | 17 45<br>58.30                             | +39 19<br>11.0                         | 0.20             | 2.87          | 1.10              | CCDM J17460+3919A          | Image   |
| XMMSL1<br>J174858.8+370338 | 267.2449   | 37.0608 | 6.3  | 0    | 23.3   | 0.75 | 0.23          | 5.40                          | b                              | 17 48<br>58.20                             | +37 03<br>47.0                         | 0.18             | 1.17          | 0.37              | CCDM J17490+3704AB         | Image   |
| XMMSL1<br>J175719.6+313327 | 269.3318   | 31.5576 | 6.2  | 0    | 18.8   | 0.75 | 0.24          | 4.20                          | b                              | 17 57<br>18.50                             | +31 33 14.5                            | 0.32             | 0.83          | 0.30              | 2MASS<br>J17571890+3133160 | Image   |

#### http://xmm.esac.esa.int/external/xmm\_products/slew\_results/web\_slew.shtml

Raw slew data made available after 8-12 days. Since 2009, processed automatically, compared with RASS and results made available on web page.

 Release of XMMSL2 – delta 1 with data from 2015-2018 by end of this year.

 Is the slew survey worth continuing in the eRosita / Einstein Probe era ?

Maybe not, but we will always have

Toulouse

~

HILIGT (see poster)

### HILIGT – multi-mission flux/upper limit server



# Output

| XMM-NEW             | VTON SLEW           | NGC3.               | 599                 | 168.8623 . 18.1 |                                    |                            |
|---------------------|---------------------|---------------------|---------------------|-----------------|------------------------------------|----------------------------|
| Observation Date    | Count rate 0.2 - 2  | Count rate 2 - 12   | Count rate 0.2 - 12 | Exp. time(s)    | Flux 0.2 - 2                       | Flux 2 - 12                |
| 2002/05/27 04:32:50 | $5.8109 \pm 1.1722$ | <1.1450             | $6.7236 \pm 1.3813$ | 4.3216          | $(8.3444 \pm 1.6833) \text{ e-}12$ | <1.0470e-11                |
| 2003/11/22 17:38:28 | $4.7725 \pm 0.7293$ | <0.4806             | $5.1788 \pm 0.7957$ | 9.0814          | $(6.8533 \pm 1.0473) \text{ e-}12$ | <4.3954e-12                |
| 2004/05/20 03:21:04 | <2.1956             | <3.3426             | <2.8699             | 1.6601          | <3.1529e-12                        | <3.0564e-11                |
| 2006/06/23 14:23:12 | <0.3618             | <0.4984             | <0.4324             | 10.0753         | <5.1950e-13                        | <4.5574e-12                |
| 2008/12/02 23:38:16 | <0.3211             | <0.4417             | <0.3841             | 11.3529         | <4.6104e-13                        | <4.0392e-12                |
| 2015/06/14 06:14:33 | <0.4872             | <0.5795             | <0.5332             | 7.4818          | <6.9958e-13                        | <5.2991e-12                |
| 2017/06/13 12:33:16 | <0.6699             | <0.4847             | <0.7203             | 8.5947          | <9.6194e-13                        | <4.4326e-12                |
|                     |                     | "                   | -                   |                 |                                    |                            |
| XMM-NEW             | VTON POINTED        |                     |                     |                 |                                    |                            |
| Observation Date    | Count rate 0.2 - 2  | Count rate 2 - 12   | Count rate 0.2 - 12 | Exp. time(s)    | Flux 0.2 - 2                       | Flux 2 - 12                |
| 2006/06/23 12:24:00 | $0.1224 \pm 0.0066$ | $0.0079 \pm 0.0018$ | $0.1303 \pm 0.0068$ | 5017            | $(1.7579 \pm 0.0949) e-13$         | $(7.2828 \pm 1.6686)$ e-14 |
| 2008/12/02 11:27:05 | 0.0343 + 0.0011     | 0.0030 + 0.0003     | 0.0373 + 0.0011     | 41734           | (4.9253 + 0.1581) e-14             | (2.7566 + 0.3561) e-14     |
| <u>(</u>            |                     | 11                  | 1                   |                 |                                    | >                          |
|                     |                     |                     |                     |                 |                                    |                            |
| INTEGRAL            |                     |                     |                     |                 |                                    |                            |
| Observation Date    | Count rate 20 - 40  | Count rate 40 - 60  | Count rate 60 - 100 | Exp. time(s)    | Flux 20 - 40                       | Flux 40 - 60               |
| No data found       | No data found       | No data found       | No data found       | No data found   | No data found                      | No data found              |
|                     |                     |                     |                     |                 |                                    |                            |
| .#                  |                     | 0                   |                     |                 |                                    |                            |

### Multi-mission - fluxes and upper limits

