Active Galactic Nuclei as cosmological probes

Elisabeta Lusso
 Junior Research Fellow (CoFund)

G. Risaliti (Uni. of Florence-INAF), S. Bisogni (INAF Arcetri/Harvard CfA), E. Nardini (INAF Arcetri), F. Salvestrini (DIFA-INAF), C. Vignali (DIFA), M. Elvis (Harvard CfA), M. Salvati (INAF Arcetri), F. Civano (Harvard CfA), R. Gilli (OaBo-INAF),

Treasures Hidden in High Energy Catalogues IRAP, Toulouse (France), May 22, 2018

The power of optical/UV+X-ray catalogues: Active Galactic Nuclei as standard candles

Elisabeta Lusso
 Junior Research Fellow (CoFund)

G. Risaliti (Uni. of Florence-INAF), S. Bisogni (INAF Arcetri/Harvard CfA), E. Nardini (INAF Arcetri), F. Salvestrini (DIFA-INAF), C. Vignali (DIFA), M. Elvis (Harvard CfA), M. Salvati (INAF Arcetri), F. Civano (Harvard CfA), R. Gilli (OaBo-INAF),

Treasures Hidden in High Energy Catalogues IRAP, Toulouse (France), May 22, 2018

The disc-corona synergy

Our starting point: The X-ray/UV non-linear relation in AGN

SMBH accretion physics intrinsic dispersion of the UV/X-ray relation

2153 quasars selected from the Sloan Digital Sky Survey DR7 with X-ray observations from 3XMM-DR5

1. Reddening and host galaxy contamination
2. Uncertainties on X-ray fluxes do to unreliable source counts
3. X-ray absorption
4. No radio loud (based from FIRST only)
5. No BAL quasars
6. Eddington Bias

743 quasars with "clean SED"
Lusso \& Risaliti (2016, ApJ, 819, 154)

SMBH accretion physics

 intrinsic dispersion of the UV/X-ray relation

SMBH accretion physics physical origin of the UV/X-ray relation

Observed: $\log L x \sim 0.61 \log L u v+0.54 \log F W H M$
Predicted: Lx ~Luv 0.57 FWHM 0.57

Shakura \& Sunyaev (1973), Svensson \& Zdziarski (1994), Merloni \& Fabian (2002), Merloni (2003)

SMBH accretion physics

 The Γ_{x} - $\lambda_{\text {edd }}$ relation: SDSS-DR7+3XMM-DR7Lusso et al., in prep.

$E(B-V)<0.1$, offaxis <6 arcmin, cts(EPIC) >250

SMBH accretion physics The Γ_{x} - $\lambda_{\text {edd }}$ relation: SDSS-DR7+3XMM-DR7

Lusso et al., in prep.

Detailed source-by-source analysis of the "outliers"

Cosmology with quasars The distance modulus

The non-linear Lx-Luv relation as a way to measure quasar distances
See: Risaliti \& Lusso (2015, ApJ, 815-33),
Risaliti \& Lusso (2017, AN, 201713351)

Cosmology with quasars
 The Quasars Hubble Diagram

Risaliti \& Lusso (2015, ApJ, 815-33)

Type 1a SN: Supernovae Cosmology Project (Sullivan+11, Suzuki+12)
See also: Risaliti \& Lusso (2017, AN, 201713351)
Bisogni, Risaliti, and Lusso (2017, FrASS, 4, 48B)

Cosmology with quasars
 The Quasars Hubble Diagram

Risaliti \& Lusso (2015, ApJ, 815-33)

Type 1a SN: Supernovae Cosmology Project (Sullivan+11, Suzuki+12)
See also: Risaliti \& Lusso (2017, AN, 201713351)
Bisogni, Risaliti, and Lusso (2017, FrASS, 4, 48B)

Cosmology with quasars Results

Open Universe (Ω_{\wedge} and Ω_{M} fitted simultaneously), QSOs only:

$$
\begin{aligned}
& \Omega_{\mathrm{M}}=0.22^{+0.10_{-0.08}} \\
& \Omega_{\wedge}=0.92^{+0.18_{-0.30}}
\end{aligned}
$$

Open, QSOs + SNe:

$$
\begin{aligned}
& \Omega_{M}=0.28^{+0.04-0.04} \\
& \Omega_{\wedge}=0.73^{+0.08}-0.08
\end{aligned}
$$

Planck 2015 results
$\Omega_{M}=0.308 \pm 0.012$
$\Omega_{\wedge}=0.692 \pm 0.012$

Cosmology with quasars
 The Quasars Hubble Diagram

~2000 quasars SDSS+3XMM catalogue

Cosmology with quasars Test of cosmology

$w_{0}-w_{a}$ plane where $w=w_{0}+w_{a}(1+z), w=-1$ no evolution, Accelerating expansion of the universe for eq. of state $\mathrm{w}<-1 / 3$

$C M B+B A O+W L$
$\mathrm{CMB}+\mathrm{BAO}+\mathrm{WL}+\mathrm{SNe}$
$\mathrm{CMB}+\mathrm{BAO}+\mathrm{WL}+\mathrm{SNe}+\mathrm{QSOs}$
Risaliti \& Lusso (2017, AN, 201713351)

To summarise

Archives still hide a potential treasure e.g. SDSS-DR14+3XMM-DR8/CSC2

1. The non-linear Lx-Luv relation is extremely tight
2. and it is based on sound physical grounds

3. The $\Gamma_{x}-\lambda_{\text {edd }}$ relation: using Γ_{x} to establish $\lambda_{\text {edd }}$ among samples of high-redshift AGN (red herring?)

Lusso et al., in prep.

4. Quasar are standard candles and can be used to measure the dark matter and energy content in the Universe

