Active Galactic Nuclei as cosmological probes

Elisabeta Lusso

Junior Research Fellow (CoFund)

G. Risaliti (Uni. of Florence-INAF), S. Bisogni (INAF Arcetri/Harvard CfA), E. Nardini (INAF Arcetri), F. Salvestrini (DIFA-INAF), C. Vignali (DIFA), M. Elvis (Harvard CfA), M. Salvati (INAF Arcetri), F. Civano (Harvard CfA), R. Gilli (OaBo-INAF),

Treasures Hidden in High Energy Catalogues
IRAP, Toulouse (France), May 22, 2018
The power of optical/UV+X-ray catalogues: Active Galactic Nuclei as standard candles

Elisabeta Lusso
Junior Research Fellow (CoFund)

G. Risaliti (Uni. of Florence-INAF), S. Bisogni (INAF Arcetri/Harvard CfA),
E. Nardini (INAF Arcetri), F. Salvestrini (DIFA-INAF), C. Vignali (DIFA),
M. Elvis (Harvard CfA), M. Salvati (INAF Arcetri), F. Civano (Harvard CfA),
R. Gilli (OaBo-INAF),

Treasures Hidden in High Energy Catalogues
IRAP, Toulouse (France), May 22, 2018
The disc-corona synergy

Photons s\(^{-1}\) keV\(^{-1}\)

Energy (keV)

10\(^{-3}\)

10\(^{-4}\)

10\(^{-5}\)

10\(^{-6}\)

X-RAY

Corona

Disc

optical

UV
Our starting point: The X-ray/UV non-linear relation in AGN

\[\log(L_X) = \beta + \gamma \log(L_{UV}) \]

\(\gamma \approx 0.6 \ (\sigma \approx 0.35) \)

Goal: Evaluate the dispersion of the relation to the intrinsic degree

Method: take into account contaminants, systematics, evolution of the slope with time, etc
SMBH accretion physics
intrinsic dispersion of the UV/X-ray relation

2153 quasars selected from the Sloan Digital Sky Survey DR7 with X-ray observations from 3XMM-DR5

1. Reddening and host galaxy contamination
2. Uncertainties on X-ray fluxes do to unreliable source counts
3. X-ray absorption
4. No radio loud (based from FIRST only)
5. No BAL quasars
6. Eddington Bias

743 quasars with “clean SED”

SMBH accretion physics
intrinsic dispersion of the UV/X-ray relation

\[\gamma \approx 0.6 \text{ with } \sigma \approx 0.24!! \]

SMBH accretion physics
physical origin of the UV/X-ray relation

SDSS-DR7 + 3XMM-DR6 + MIXR (Mingo+2015)

Observed: \(\log L_X \sim 0.61 \log L_{UV} + 0.54 \log \text{FWHM} \)

Predicted: \(L_X \sim L_{UV}^{0.57} \text{FWHM}^{0.57} \)

Elisabeta Lusso Junior Research Fellow
SMBH accretion physics

The $\Gamma_x - \lambda_{edd}$ relation: SDSS-DR7+3XMM-DR7

Lusso et al., in prep.

$N = 362$

$\gamma = 0.252 \pm 0.046$

$K = 2.280 \pm 0.038$

$\delta = 0.07$ ($\sigma_{\Delta\Gamma_x} = 0.32$)

$E(B-V)<0.1$, offaxis<6 arcmin, cts(EPIC)>250
SMBH accretion physics

The Γ_{X}-λ_{edd} relation: SDSS-DR7+3XMM-DR7

Lusso et al., in prep.

Detailed source-by-source analysis of the “outliers”

Elisabeta Lusso Junior Research Fellow

Treasures Hidden in High Energy Catalogues, May 22
Cosmology with quasars

The distance modulus

\[\log(L_X) = \beta + \gamma \log(L_{UV}) \]

\[\log(F_X) = \beta' + \gamma \log(F_{UV}) + 2(\gamma - 1)\log D_L(z, \Omega_M, \Omega_{\Lambda}) \]

The non-linear \(L_X \)-\(L_{UV} \) relation as a way to measure quasar distances

Cosmology with quasars

The Quasars Hubble Diagram

~800 quasars

Excellent agreement with SNe @ z=0.3-1.4

Type 1a SN: Supernovae Cosmology Project (Sullivan+11, Suzuki+12)

See also: Risaliti & Lusso (2017, AN, 201713351)
Bisogni, Risaliti, and Lusso (2017, FrASS, 4, 48B)
Cosmology with quasars

The Quasars Hubble Diagram

Test cosmological models in a poorly explored redshift range i.e. $z>2$

Type 1a SN: Supernovae Cosmology Project (Sullivan+11, Suzuki+12)

See also: Risaliti & Lusso (2017, AN, 201713351)
Bisogni, Risaliti, and Lusso (2017, FrASS, 4, 48B)
Cosmology with quasars

Results

Open Universe
(Ω_L and Ω_M fitted simultaneously),
QSOs only:
$\Omega_M = 0.22^{+0.10}_{-0.08}$
$\Omega_L = 0.92^{+0.18}_{-0.30}$

Open, QSOs + SNe:
$\Omega_M = 0.28^{+0.04}_{-0.04}$
$\Omega_L = 0.73^{+0.08}_{-0.08}$

Planck 2015 results
$\Omega_M = 0.308\pm0.012$
$\Omega_L = 0.692\pm0.012$

Quasars are complementary (i.e. orthogonal) to supernovae

Cosmology with quasars
The Quasars Hubble Diagram

~2000 quasars SDSS+3XMM catalogue
Risaliti & Lusso (2017, AN, 201713351)
Cosmology with quasars
Test of cosmology

w_0-w_a plane where $w=w_0+w_a(1+z)$, $w=-1$ no evolution,
Accelerating expansion of the universe for eq. of state $w<-1/3$

Risaliti & Lusso (2017, AN, 201713351)
To summarise

Archives still hide a potential treasure e.g. SDSS-DR14+3XMM-DR8/CSC2

1. The non-linear L_X-L_{UV} relation is extremely tight
2. and it is based on sound physical grounds

3. The Γ_X-λ_{edd} relation: using Γ_X to establish λ_{edd} among samples of high-redshift AGN
 (red herring?)

 Lusso et al., in prep.

4. Quasar are standard candles and can be used to measure the dark matter and energy content in the Universe

 Risaliti & Lusso 2015