

Athena status

Didier Barret

Directeur de Recherches Institut de Recherche en Astrophysique et Planétologie CNRS, UPS, OMP, CNES dbarret@irap.omp.eu

Treasures hidden in high-energy catalogues Toulouse, May 24th, 2018

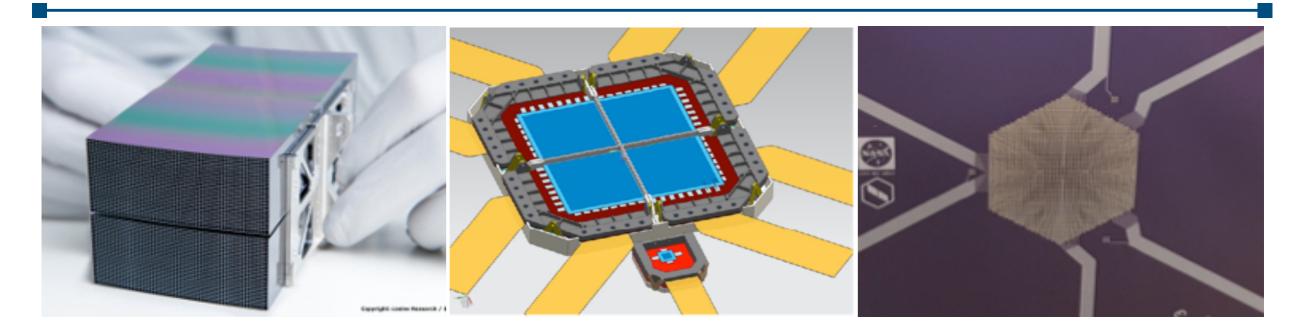
Conclusions

- Let me start with the Conclusions for a change...
- Athena is reaching an excellent level of definition: we have now a stable configuration for the instruments, the SIM and the overall S/C
 - No feasibility issue identified at S/C level
- Maximizing the science return of the mission in a constrained programmatic context has been and remains the top priority
 - Capabilities in many performance parameters improved by at least an order of magnitude compared to existing or planned facilities
- Stay connected with Athena and keep showing your support
 - We hope to see you all at the Athena Palermo conference

Athena

- Athena is the second large mission of the ESA Cosmic Vision
- The Hot and Energetic Universe
 - Follow the structuring and chemical enrichment of baryonic matter across cosmic times, from the first galaxy groups to the local massive clusters
 - Spatially resolved high resolution X-ray spectroscopy of hot gas trapped in dark matter potential wells to measure turbulence, bulk motions, abundances, temperatures...
 - Determine how black holes work and shape the Universe?
 - High resolution X-ray spectroscopy of accretion disks, winds and jets and their interaction with the surrounding, e.g. black hole feedback at different scales
 - Perform a complete census of black holes from their low mass seeds at very high redshifts to the first supermassive black holes found in AGNs
 - Wide field X-ray survey to measure luminosity functions and AGN properties as a function of redshift
- A multi-purpose X-ray observatory to explore planets, stars, compact objects, interstellar medium...

The path to Athena — I


- The Athena science theme was selected in Nov. 2013
- The Athena mission proposal was selected in June 2014
- ESA internal study and competitive industrial studies started
 - Two mirror configurations studied: (large mirror) 2m² vers (small) 1.4 m²
- ESA MCR panel conclusions (May 2016)
 - Athena S/C feasible, X-IFU (and instrument module) design needs consolidation, potential mass non compliance
 - Cost issue with both configurations
 - Transferring activities to ESA member states & optimizing international contributions considered
 - ESA MCR panel still recommended the large mirror configuration to be the baseline for follow-up industrial studies

The path to Athena — II

- System level mass non compliance remained throughout 2017
 - Proposal was formulated to remove the outer row of the mirror, assuming the instruments would remain within their strict mass allocation
- X-IFU design consolidation focussed on cryogenic chain and required thermal budget margins while keeping the mass budget under control
 - Slow convergence was reached early 2018 with a robust design meeting the top level performance requirements
- L mission cost-cap confirmed, hence Athena remained over cost
 - Cost saving options agreed by the Athena Science Study Team in Dec. 17
 - 1 keV effective area reduction, reduction of mission lifetime, reduction of ToO support, optimization of international contributions, more activities performed by the P/L team

Athena as it stands today

- Large aperture X-ray telescope and two focal plane instruments
 - Innovative Silicon Pore Optics: ESA procurement
 - 5" Half Energy Width (HEW), 1.4 m² at 1 keV and 0.25 m² at 6 keV (unchanged)
 - Mounted on a hexapod mechanism enabling tilting and defocussing
 - WFI: A wide field imager: PI K. Nandra (MPE, DE)
 - Active Pixel Sensors: 0.2-12 keV, 100 eV, 1", 40' x 40'
 - Fast chip for very bright point sources
 - X-IFU: A high resolution X-ray spectrometer: PI D. Barret (IRAP, FR)
 - Superconducting Transition Edge Sensors cooled at ~100 mK: 0.2-12 keV, 2.5 eV, 5' FoV, 5"

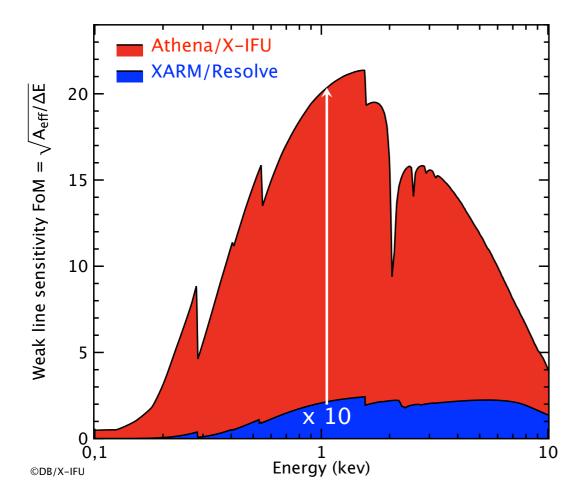

A SPO mirror module (Credits ESA)

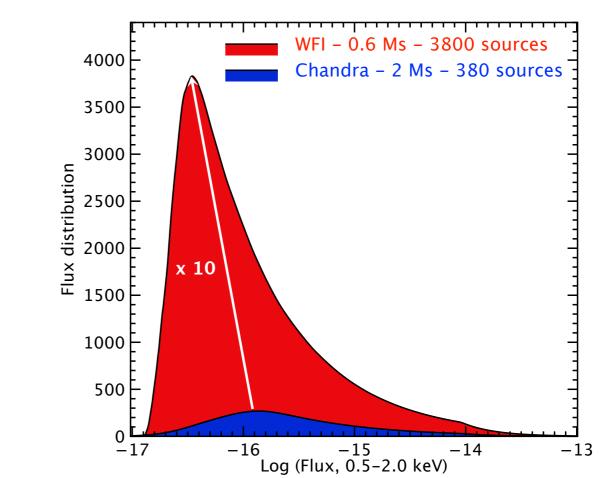
The WFI focal plane (Credits MPE)

The TES array (Credits NASA/GSFC)

The Athena mission profile

- Large spacecraft: ~7 tons (compliant with launcher capability)
- Launched by Ariane 6 at L2 (possibly L1 for better environment)
- 4 year mission lifetime (still designed for 10 years)
- ToO capability: 4 hour response time, 40% of cases (working days)
- Science Ground Segment: SOC/MOC and 2 Instrument Science Centers

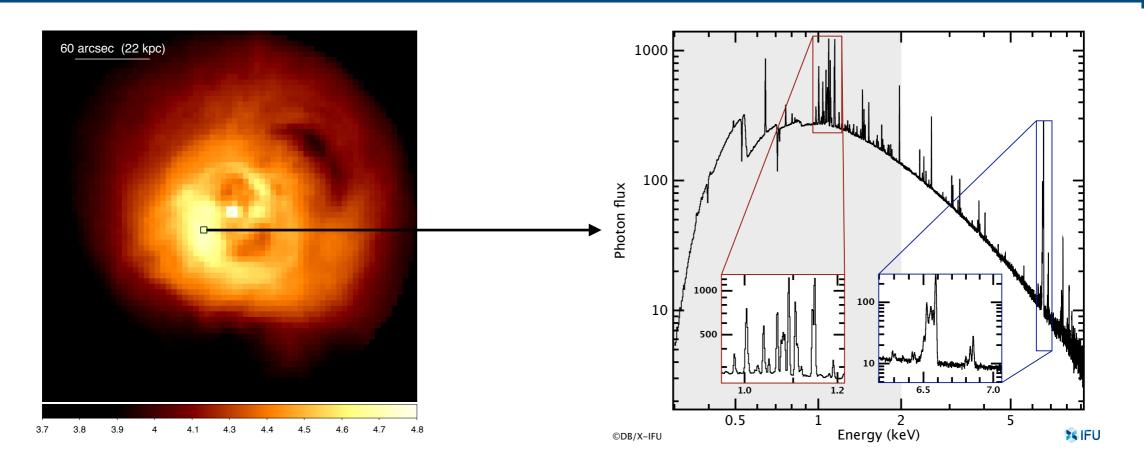




The Ariane 6 launcher (Credits: Ariane Espace)

A breakthrough machine

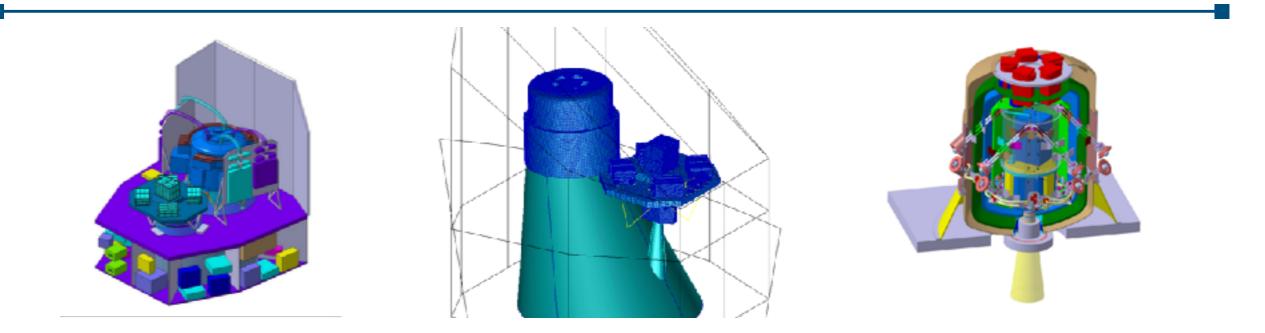
- Weak line sensitivity combines effective area and spectral resolution
 - ▶ 10 times better sensitivity at 1 keV than XARM (on 5" scales versus 1')
- Survey speed combines effective area and field of view (grasp)
 - 10 times more sources per pointing than Chandra in 3 times less observing time



Credits: X-IFU team & J. Aird/A. Rau (WFI team)

A true integral field unit

- Hitomi demonstrated the power of spatially resolved high-resolution X-ray spectroscopy
- Each X-IFU pixel will provides a high resolution spectrum on 5" scale
 - To provide measures of the abundance, velocity, turbulence, density...
 - ➡ To enable the study of the energetics of black hole feedback in clusters



Perseus cluster observations (credits J. Sanders)

High quality X-ray spectrum per pixel

What next?

- Optimizing the Science Instrument Module (SIM) configuration
 - Slanted cone configuration saves mass, enables modularity, reduce launch loads to X-IFU
- Technology demonstration on-going
- Consolidating the already robust X-IFU baseline configuration
 - Last round of instrument optimization to give us performance margins
- Keep working on the cost...

Old SIM configuration (Credits: ESA) The slanted cone approach (Credits: ESA) Current X-IFU configuration (Credits: CNES)

What next?

- Angular resolution improvement (up to Q3/19)
 - Review of recent progresses held yesterday at ESA
 - Progresses to be monitored closely with the Athena Science Study Team
 - Sensitivity of core scientific objectives to angular resolution to be assessed
- Formalization of the instrument consortia triggered before summer
- Short term schedule:
 - Instrument Preliminary Requirement Review (Q4/18)
 - Mission Formulation Review (Q3-4/19)
 - Stop iterating on mirror module angular resolution improvement
 - Mission Adoption Review (Q3-4/21)
- Implementation phase of about 10 years still subject to optimization
 - Brings the launch date in the early 30s

Conclusions

- Athena is reaching an excellent level of definition: we have now a stable configuration for the instruments, the SIM and the overall S/C
 - No feasibility issue identified at S/C level
- Maximizing the science return of the mission in a constrained programmatic context has been and remains the top priority
 - Capabilities in many performance parameters improved by at least an order of magnitude compared to existing or planned facilities
- Stay connected with Athena and keep showing your support
 - We hope to see you all at the Athena Palermo conference