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Supernovae

>SNe are stellar
explosions that occur == {ami\
as the final stage of S ‘\f \\&
stellar evolution. \ ¥

Massive stars explode

> SNe are classified in

two important ok | ‘
groups: e SR
thermonuclear and '_ .
core-collapse. sA



Why are SNe important?

> Enrich the ISM with heavy elements.

> Contribute to the production of new
generation of stellar systems, planets and,
maybe, life.

> Through shock-CSM interaction we can infer
the structure of the circumstellar medium
(CSM), which is strongly related with the
stages previous to the SNe explosion.



Supernovae type Iln

6

> Show narrow emission lines of H
and He in their optical spectra
thought to arise from a very
dense, photoionized CSM produced
by the mass-loss of the progenitor
star.
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> As the X-ray luminosity is

proportional to the emission

measure, X-ray observatories are
particularly sensitive to SNe
interacting with relatively dense
progenitor CSMs (type IIn).
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> While more than ~400 SNe A =O-rich |

IIn are known, only 12 are 1
known to emit in the X-ray = s

bands. ; iéAA%pgw ]
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> Most X-ray detected SNe ™. | A %3;

are detected early after 2 7l o ]

explosion and decline with B e ey o - -

time, but a handful show 341 .

interactions peaking only | 1 10 | mo 1000 o

after many years. These
imply relatively rapid change
in the progenitor wind or
even eruptive outburst.
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SN1996cr: a case study of an
amazing archival object

o > SN 1996cr was
discovered by Chandra as
a serendipitous
ultraluminous X-ray
source (ULXs) in Circinus
Galaxy.

> SN 1996cr exploded
between 1995-02-28 and
1996-03-16.

> Missed by SNe searches
at the time.
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> Several observations in 2000, 2001, 2004 were used to
leverage 485 ks in 2009 to study SN1996cr in detail. Later
serendipitous XMM data were obtained to follow-up ULXs.

ObsID

374
62877

Date (UT)

2000-06-15
2000-06-16

Exposure (ks)

7.1
60.2

Instruments

Chondra HETG
Chondra HETG

0111240101

2001-05-D6

B5.5/91.8/59.5

2000,2001,2004 observations

anar-vewton MOSLMMOS2ipn

4770
4771

2004-06-02
2004-11-28

2008-12-15
2008-12-23
2008-12-26
2008-12-08
2008-12-18
2008-12-22
2008-12-27
2008-12-29
2008-12-24
2009-03-03
2009-03-04
2009-03-01

55.0
59.5

Chondra HETG
Chendr HETG

Chandrar HET G
Chandrae HET G
Chandra HET G
Chandrae HET G
Chendra HETG
Chondr HETG
Chondr HETG
Chandre HET G
Chandrar HET G
Chandrae HET G
Chandra HET G
Chendra HETG

From 12/2008 to 03/2009

701951001 201302035 47 8/49.0/536.4 xmar-Newron MOST/MOS 2 pn
0656580601 2014-03-01 31.4/31.2/17.1 XMM-Newton MOSI/MOS2/pn
07923382701 2016-08-23 19.8/19.6/17.0  xwa-Newrton MOSIH/MOS2/pn
0730950201 2008-02-007  41.9/41.3/35.7 xMM-Newrton MOSI/MOS2ipn




Density (amu/cc)
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> Hydrodynamical simulations were fit to the 2000-2010 data,
demostrating that: SN1996cr exploded in a low-density
medium before interacting with a dense shell of material at
a distance <0.03pc from the explosion.

> The dense shell arose from the interaction of a WR wind
with a previously RSG wind.
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> Hydrodynamical model match well the light curve until 2009
epoch, as well as the spectra at 4 different epochs.
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> Hydrodynamical model match well the light curve until 2009
epoch, as well as the spectra at 4 different epochs.

T i "
I b, 0 g Ty o [

Energy [keW]

Energy [keV]

HETG-04 || |
Pa o g U™ el | bwarkadas +, 2010.
E 2 ' s
Energy [keW]
HETG-09 I _I
) L, Mg g L e ol
1 2 5 3

Energy [keV]



> However, 2009 campaignh of SN1996cr also permits us
analyze individual lines in X-ray bands. The line-shape
give us information about the geometry of the ejecta-
CSM interaction.
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> However, 2009 campaignh of SN1996cr also permits us
analyze individual lines in X-ray bands. The line-shape
give us information about the geometry of the ejecta-
CSM interaction.

> Two distinct polar shocks are required by the velocity

profiles.
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»We applied this model o two decades of X-ray

Quirola-Vasquez+, 2018, in prep.

observations

ObsID Date (UT) Exposure (ks)  Instruments

374 2000-06-15 7.1 Chandra HETG

62877 2000-06-16 60.2  Chandra HETG

0111240101 2001-08-06  85.5/91.8/59.5 xmm-Wewron MOSI/MOS2ipn
4770 2004-06-02 350 chandra HETG

4771 2004-11-28 395 Chandra HETG

10223 2008-12-15 102.9 Chandra HETG

10224 2008-12-23 771 Chandra HETG

10225 2008-12-26 67.9 Chandra HETG

10226 2008-12-08 19.7  Chandra HETG

10832 2008-12-18 2006 Chandra HETG

10833 2008-12-22 28.4 Chandra HETG

10842 2008-12-27 36.7  Chandra HETG

10843 2008-12-29 570 chandra HETG

10844 2008-12-24 27.2 Chandra HETG

10850 2009-03-03 16.5 Chandra HETG

10872 2009-03-04 13.9 Chandra HETG

10873 2009-03-01 18.1 Chandra HETG

0701981001 20130203 47 8/49.0/36.4  xmm-Newron MOSI/MOS2pn
0656580601  2014-03-01 3L.4731.2/17.1  xvMM-Newton MOST/MOS2/pn
0792382701  2016-08-23 19.8/19.6/17.0 xyvM-Newron MOSHMOS2/pn
0780950201 2018-02-07 41.9/41.3/357 xmM-Newron MOSI/MOS2pn
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> Future project: We are planing to use machine learning
techniques to search for emission line objects in the
Chandra and XMM archives.



Conclusions

> SN1996cr is an excellent case of study of a
serendipitous archival discovery.

>»With the amassed data we have been able to show that
its progenitor star blew a CSM buble, and that the
current ejecta-CSM shock is asymmetric, with both
wide and narrow polar components.

> The number of SNe type ITn that emit in X-ray are low
because a lot of factors. However, inside X-ray catalogs
could exist more, waiting to be discovered.



X-ray transients

- T will start a project to use machine learning
techniques to search for and chracterize X-
ray transients in the Chandra and XMM
archives.



A New, Faint Population of X-ray Transients
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Figure 1. X-ray light curve (top panel) and hardness ratio (bot-
tom panel) of CDF-5 XT1. To highlight the sharp rise at =110 s,
the 0.3-7.0 keV counts are logarithmically binned and shown with
lo errors (Gehrels 1986); for this reason, binning here differs
somewhat from that provided in Table 1. The red dashed curve de-
notes the best-fitting powerlaw decay time slope of a=—1.53. The
hardness ratio, HR, and 1o errors are calculated as (H —-8)/({H+S5)
following the Bayesian method of (Park et al. 2006), where S and
H correspond to the 0.3-2.0 keV and 2.0-7.0keV counts, respec-
tively. We omit bins with no counts in the bottom panel, since
HR walues are completely unconstrained. The dotted horizontal
line signifies the HR wvalue expected for a I'=1.43 power law.
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Figure 3. Images (6”x11") in the vicinity of CDF-S XT1. From left to right: (A) Chandra ACIS-1 (L.3-7.0keV image of the transient
detection acquired on 2014 October 01; (B) HST/ACS F606W image from GOODS-S acquired prior to 2008 (Giavalisco et al. 2004);
(C) VLT /VIMOS R-band image serendipitously acquired on 2014 October 01 (80 min post-transient); (D) VLT /FORS2 R-band image
acquired on 2014 October 18 (18 days post-transient); (E) Gemini/GMOS-S r-band image acquired on 2014 October 29 (27 days post-
transient) (F) HST/WFC3 F110W image acquired on 2015 January 20 (111 days post-transient). (G) HST/WFC3 F125W image from
CANDELS acquired prior to 2011 (Grogin et al. 2011; Koekemoer et al. 2011). (H) F110W - F125W difference image. A 0”52 radius
red circle denotes the 200 X-ray positional error, centred on the X-ray transient position. The closest potential optical counterpart, seen
clearly in the HST images and labeled #1 in (B), lies 0713 southeast of the X-ray position and has a magnitude of mp=27.5 mag. It is
classified as a dwarf galaxy with z;,=2.23. This galaxy appears marginally detected in the 1 hr FORS2 image, but not in the VIMOS or
GMOS-S images. Three other sources are labeled and discussed in the text. No transient is observed in the HST difference image (final

panel).




Presumably, there should be more fast
transients like CDF-S X-1 in the archives. One
of the goals of my project is to find more
and/or place firm limits on their rate.

I look forward to talking with you about both
SNe and fast X-ray transients during this
meeting.



Astronomy's next big discovery may
be hiding in piles of old data.

THANKS



Additional slides
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> El mejor modelo fue:

TBabs(shellblur*vpshock)qTBabs(shellblur*vpshock)

alta temp., emision polar baja temp., emision polar
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Figure 7. Best-fit model M5 spectrum (black line) between 0.3-10keV
in units of Photons cm™ s~! keV~!. The higher and lower temperature
components are denoted in red and blue, respectively. The color vertical
lines mark the most intense lines of the H-like and He-like ions of high-Z
elements.
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