Counterparts determination and classification in the all-sky surveys era

M. Salvato

with: Johannes Buchner, Tamas Budavari, Tom Dwelly, Andrea Merloni, Marcella Brusa, Sotiria Fotopoulou, Arne Rau, and more

OUTLINE

\star What the ALL-SKY surveys can do for you (the case for WISE and GAIA)
\star Surveys are not ALL (a.k.a why we needed, e.g., NWAY)

* application to ROSAT/2RXS and XMMSLEW2
\star Physical properties of the counterparts
Ł Another reason why you want ALL-SKY surveys (a.k.a. photoz!)
\star The power and the risks behind priors (also in view of eROSITA)

AGN: just interesting or actually important? BOTH,ACTUALLY!

Important: every galaxy
is/was/will be (?) an AGN

Magorrian+98, Kormendi\&Richstone95, Nuker team

AGN: just interesting or actually important?

BOTH,ACTUALLY!

Important: every galaxy

is/was/will be (?) an AGN

AGN: just interesting or actually important? BOTH,ACTUALLY!

Important: every galaxy
is/was/will be (?) an AGN

Census of BH growth requires sampling full luminosity-redshift plane

- SPIDERS_ROSAT(Salvato et. al. 2018, Dwelly, MS, et. al. 1017)
- STRIPE82X(Ananna, MS, et. al. 2017)
- XMM - XXL (Georgakakis, MS, et al. 2017, Menzel et al 2016)
- COSMOS(Marchesi...MS, et. al. 2016)
- CDFS(Hsu, MS, et. al. 2014)

ROSAT survey missed in the counting because:

1) Large positional uncertainties

ROSAT survey missed in the counting because:

1) Large positional uncertainties

ROSAT survey missed in the counting because:

1) Large positional uncertainties

ROSAT survey missed in the counting because:

1) Large positional uncertainties

2) Lack of deep enough, homogeneous and wide surveys

ROSAT survey missed in the counting because:

1) Large positional uncertainties

2) Lack of deep enough, homogeneous and wide surveys

Only the counteparts to bright ROSAT sources in some part of the sky where known (e.g/ Schwope et al. 2000)

Then WISE was launched..

X-ray counterparts identification

X-ray counterparts identification

X-ray counterparts identification

X-ray counterparts identification

NWAY in a nutshell

(i) Matching of N catalogues simultaneously.
(ii) Computation of all combinatorially possible matches, including partial matches across catalogues, i.e. the absence of counterparts in some catalogues (iv) Taking into account distances, positional uncertainties and the source number densities, computation of the probability of each possible match. (v) Computation of the probability that there is no match.

NWAY in a nutshell

(i) Matching of N catalogues simultaneously.
(ii) Computation of all combinatorially possible matches, including partial matches across catalogues, i.e. the absence of counterparts in some catalogues
(iv) Taking into account distances, positional uncertainties and the source number densities, computation of the probability of each possible match.
(v) Computation of the probability that there is no match.

NWAY in a nutshell

(i) Matching of N catalogues simultaneously.
(ii) Computation of all combinatorially possible matches, including partial matches across catalogues, i.e. the absence of counterparts in some catalogues (iv) Taking into account distances, positional uncertainties and the source number densities, computation of the probability of each possible match. (v) Computation of the probability that there is no match.

NWAY in a nutshell

(i) Matching of N catalogues simultaneously.
(ii) Computation of all combinatorially possible matches, including partial matches across catalogues, i.e. the absence of counterparts in some catalogues (iv) Taking into account distances, positional uncertainties and the source number densities, computation of the probability of each possible match. (v) Computation of the probability that there is no match.
(vi) Incorporating magnitude distribution, colors, magnitude\&colors or other information about the sources of interest, refining the match probabilities.

NWAY in a nutshell

(i) Matching of N catalogues simultaneously.
(ii) Computation of all combinatorially possible matches, including partial matches across catalogues, i.e. the absence of counterparts in some catalogues (iv) Taking into account distances, positional uncertainties and the source number densities, computation of the probability of each possible match.
(v) Computation of the probability that there is no match.
as in Pineau +17
(vi) Incorporating magnitude distribution, colors, magnitude\&colors or other information about the sources of interest, refining the match probabilities.

For each source of the primary catalogue (in the application from this paper: for each the X-ray source), compute (a) the probability that this source does not have a counterpart and (b), assuming this source has a counterpart, compute the relative probability for each possible match.

$X_{1} R_{1} D_{1} \sigma_{1}$

Input to NWAY

$X_{ı}$ RA, Decı σ_{1}

$\mathrm{B}_{2} \mathrm{RA}_{\mathrm{B} 2} \mathrm{Dec}_{\mathrm{B} 2} \sigma_{\mathrm{B} 2} \mathrm{mag}_{\mathrm{B} 2}$ B_{3} RA $_{B 3}$ Dec $_{\text {B3 }} \sigma_{\text {B3 }}$ mag $_{\text {B }}$ $B_{4} R^{B 4}$ Dec $_{B 4} \sigma_{B 4}$ mag $_{B 4}$ $\mathrm{B}_{5} \mathrm{RA}_{\mathrm{B} 5} \mathrm{Dec}_{B 5} \sigma_{\mathrm{B} 5} \mathrm{mag}_{\mathrm{B} 5}$

Input to NWAY

$X_{1} R A_{ı}$ Decı σ_{1}

$\mathrm{K}_{5} \mathrm{RA}_{\mathrm{k} 5} \mathrm{Dec}_{\mathrm{k} 5} \sigma_{\mathrm{k} 5}$ magk 2

B_{2} RA $_{\mathrm{B} 2} \mathrm{Dec}_{\mathrm{B} 2} \sigma_{\mathrm{B} 2} \mathrm{mag}_{\mathrm{B} 2}$ B_{3} RA $_{B 3}$ Dec $_{\text {B3 }} \sigma_{\text {B3 }}$ mag $_{\text {B }}$ $B_{4} R_{A_{B 4}}$ Dec $_{B 4} \sigma_{B 4}$ mag $_{B 4}$ $\mathrm{B}_{5} \mathrm{RA}_{\mathrm{B5}} \mathrm{Dec}_{B 5} \sigma_{\mathrm{B} 5} \mathrm{mag}_{\mathrm{B} 5}$

NWAY output

X cat. entry	Z cat. entry	K cat. entry	B cat. entry	various Probs.	P (X has a ctp)	P (this is the correct ctp)	
$\mathbf{1}$	1	-	3	\ldots	\ldots	0.8	0.2
$\mathbf{1}$	-	5	-	\ldots	\ldots	0.8	0.6
1	-	-	4	\ldots	\ldots	0.8	0.1
1	-	-	5	\ldots	\ldots	0.8	0.1
2	\ldots						
2	\ldots						

The beauty of NWAY
prior
(e.g due to depth of data)

The beauty of NWAY

prior
 (e.g due to depth of data)

The beauty of NWAY

prior
 (e.g due to depth of data)

(posterior) prob. of

an association, given the data

The beauty of NWAY

prior
 (e.g due to depth of data)

(posterior) prob. of an association, given the data

The beauty of NWAY

prior
 (e.g due to depth of data)

an association, given the data

$$
P\left(D_{\phi} \mid H\right) \times P\left(D_{m} \mid H\right)
$$

The beauty of NWAY

prior
 (e.g due to depth of data)

(posterior) prob. of an association, given the data

$$
\begin{aligned}
& \qquad P\left(D_{\phi} \mid H\right) \times P\left(D_{m} \mid H\right) \\
& \text { separation, } \\
& \text { pos. uncertainties } \\
& \text { number density }
\end{aligned}
$$

(Similar to Pineau et al 2017)

The beauty of NWAY

prior
 (e.g due to depth of data)

(posterior) prob. of an association, given the data

The beauty of NWAY

prior
 (e.g due to depth of data)

(posterior) prob. of an association, given the data

For extragalactic ROSAT/2RXS (Boller+16) and XMMSLEW2: a MIR color-magnitude prior

SPectral IDentification ERosita Sources

PI: Merloni, Nandra

	ROSAT QSO/GAL/Stars	XMMSLEW2 QSO/GAL/Stars
SDSS UIUIII	$9062 / 2580 / 271$	$1193 / 265 / 24$
SDSS IV (eBOSS)	$1790 / 872 / 321$	$184 / 80 / 34$
TOT	$\mathbf{1 0 8 5 2 / 3 4 5 2 / 5 9 2}$	$\mathbf{1 3 7 7 / 3 4 5 / 5 8}$

SPectral IDentification ERosita Sources

PI: Merloni, Nandra

	ROSAT QSO/GAL/Stars	XMMSLEW2 QSO/GAL/Stars
SDSS VILIII	$9062 / 2580 / 271$	$1193 / 265 / 24$
SDSS IV (eBOSS)	$1790 / 872 / 321$	$184 / 80 / 34$
TOT	$\mathbf{1 0 8 5 2 / 3 4 5 2 / 5 9 2}$	$\mathbf{1 3 7 7 / 3 4 5 / 5 8}$

SPectral IDentification ERosita Sources

PI: Merloni, Nandra

	ROSAT QSO/GAL/Stars	XMMSLEW2 QSO/GAL/Stars
SDSS VIUIII	$9062 / 2580 / 271$	$1193 / 265 / 24$
SDSS IV (EBOSS)	$1790 / 872 / 321$	$184 / 80 / 34$
TOT	$\mathbf{1 0 8 5 2 / 3 4 5 2 / 5 9 2}$	$\mathbf{1 3 7 7 / 3 4 5 / 5 8}$

Bright AGN up to high-z in
comparable number as
from pencil beam surveys !

Coffey, MS et al. 2018 : SPIDERS DRI4 release with physical properties

first star/AGN classifications
 (usefull for spectroscopic follow-up)

Not-so-subliminal message: give a try to NWAY

first star/AGN classifications

(usefull for spectroscopic follow-up)

Not-so-subliminal message:

 give a try to NWAY
first star/AGN classifications

(usefull for spectroscopic follow-up)

Maccacaro+88

See also Mainieri+, Berger+, Civano+

Same prior will not work in the Galactic plane

XMMSL2 in the galactic plane

XMMSLEW2 GAIA Counterparts classification in the galactic plane

XMMSLEW2 GAIA Counterparts classification in the galactic plane

XMMSLEW2 GAIA Counterparts classification in the galactic plane

XMMSLEW2 GAIA Counterparts classification in the galactic plane

Accuracy in STRIPE82X photoz comparable to Legacy-COSMOS with SDSS+VHS+WISE (10 bands only)

Brescia, MS et al 2018

All the best to SPHEREx (Dore' et al 2018), Euclid and LSST !

Next challenge: the 4 million eROSITA point-like sources

Next challenge:

 the 4 million eROSITA point-like sources

Next challenge:

the 4 million eROSITA point-like sources

Prior must be adequate to the depth

I am working on the new prior (stay tuned!)

Summary

We developed and released Nway, a code that based on Bayesian statistics allow to consider at once, astrometry, distribution and physical properties of candidate counterparts, opposed to those of field sources. Works also in radio.

For 2RXS (XMMSL2) we defined a MIR color-magnitude prior. Based on a well understood spectroscopic sample we claim a reliable counterpart for at least $\sim 97 \%$ of the 106573 (17 665) X-ray sources, with a small fraction of spurious associations.

The combination of deep pencil beam and shallow all-sky area allowed to determine a better separation between stars ans AGN dominated object in the W1 and Fx plan.

GAIA allowed the determination and classification of the XMMSLEW2 sources in the galactic plane.

For eROSITA, depeding on depth and location (e.g. extragal/gal/poles) different discriminators need to be defined (work in progress). NWAY will be also slightly modified.

