

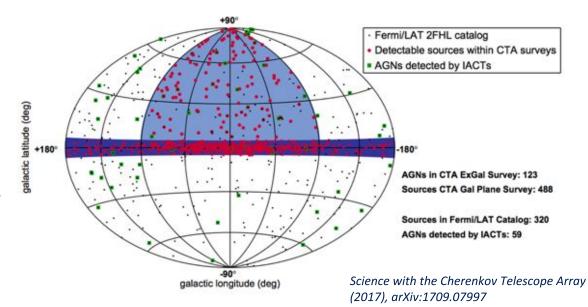
cherenkov elescope array

A Catalog Pipeline for Sources in the CTA Galactic Plane Survey

Treasures hidden in high energy catalogues Toulouse, May 2018

Josh Cardenzana for the CTA Consortium with help from: Jürgen Knödlseder, Luigi Tibaldo (*IRAP*) Yves Gallant (*LUPM, CNRS/U. Montpellier*)

Surveys – Key CTA Science Projects

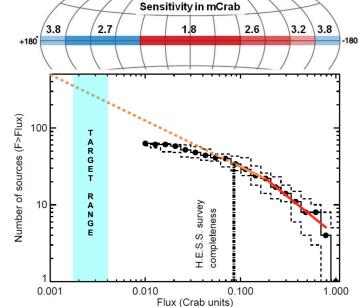


Extragalactic Survey

- |*l*|< 90°, *b* > 5°
- Better understand TeV population of AGN

Galactic Plane Survey

- |*b*| < 5°
- All longitudes (at varying sensitivity)



Cardenzana - Treasures hidden in high energy catalogues

Galactic Plane Survey (GPS)

Survey of the Galactic plane to address:

- Physics & census of Galactic gamma-ray source populations (SNR, PWNe, binaries, etc...)
- Identifying possible PeVatron candidates
- Characterize the diffuse Galactic gamma-ray emission
- Study the origin of cosmic rays

+90

Science with the Cherenkov Telescope Array (2017), arXiv:1709.07997

Method Overview

Pipeline for generating catalog of sources from survey data (built on GammaLib and ctools)

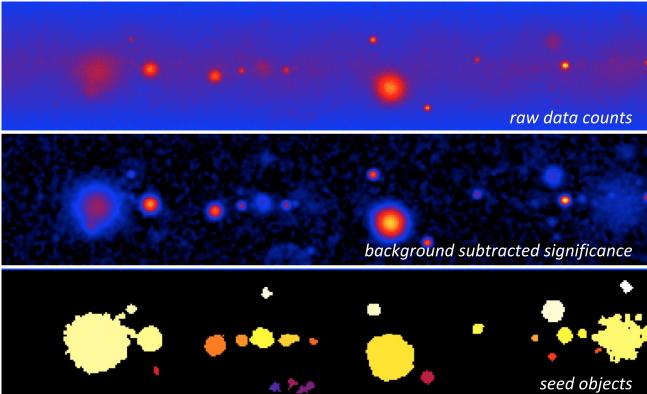
The gist:

- Input data and background model
- Returns fully parameterized list of additional sources in that data
- Provide tools for assessing the results of the analysis

Additional Resources:

- Tools for source detection
- Tools for iterative source fitting
- Macros for studying results

Source Detection (finding seeds)



How it works:

- Compute a significance map based on observed & predicted counts
 - depending on region size & model type, this can take a lot of time
- Apply technique based on the SExtractor method (<u>https://doi.org/10.1051/aas:1996164</u>)
 - identifies individual pixels above a given threshold (typically >3σ)
 - connect nearby pixels to identify "objects" (these are individual sources)
 - done in a single pass over the map (i.e. it's pretty fast)
 - de-blend objects to detect overlapping sources
 - Tuning parameters: significance threshold, pixels per object, deblend levels

Source Detection (finding seeds)

Raw data counts map

Significance map after accounting for expected background events and interstellar emission

Detected seeds input

to fitting algorithm (colored by seed ID)

Source Fitting

How it works:

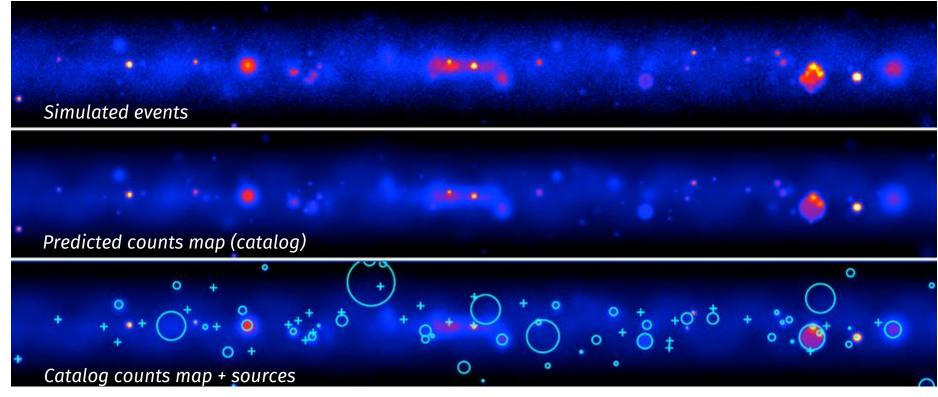
- Take seeds from source detection
 - Each source starts as point source with sub-sensitivity flux
- Iteratively fit all sources:
 - Fit source
 - If source is new, test extension (disk, Gaussian)
 - Evaluate fit validity (reasonable parameters & extension)
 - Do this for every source
- Loop until all sources have converged (ΔTS < 10)
 - Remove insignificant sources (final TS < 10)
- Test for spectral curvature
- Reoptimize all parameters

cherenkov telescope array

Testing the Pipeline

Testing on Simulation of GPS

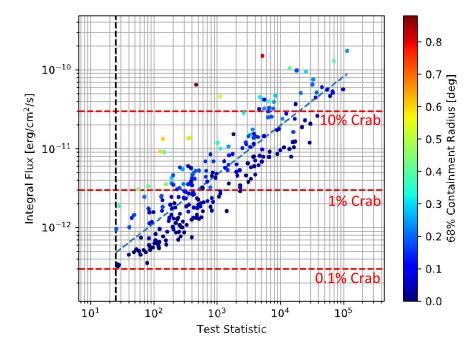
Purpose:


- Stress test analysis methods on mock-up "data"
- Simulate (somewhat realistically) the CTA GPS data will obtain
 - Includes sources modeled based on existing observations

Caveat:

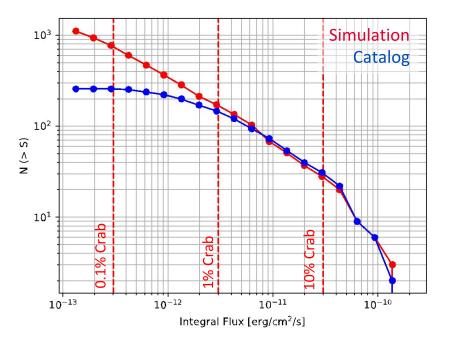
• The simulation should only be considered as a means to test software tools and not a representation of what CTA will ultimately see.

Testing on Simulation of GPS



Source Distribution – TS vs. Flux

Noteable features:


- Trend between detection significance & flux
- Appear to miss sources at low flux
 - Optimize detection parameters?
 - Optimize energy threshold for detection

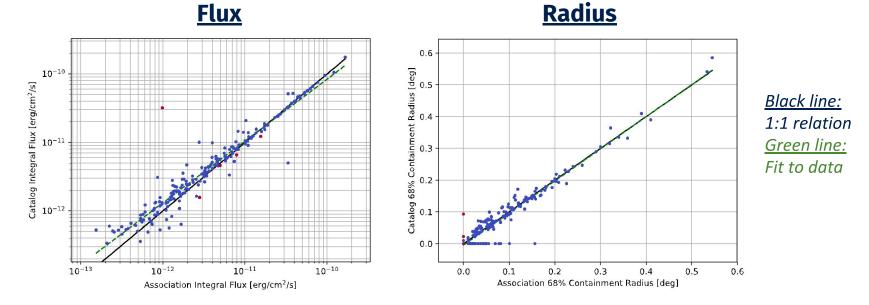
Comparison to Simulation – logN-LogS

- Appear to miss sources at low flux
 - May need looser detection criteria
 - Alternative source detection methods

Comparison to Simulation

Each source is compared to simulated sources by:

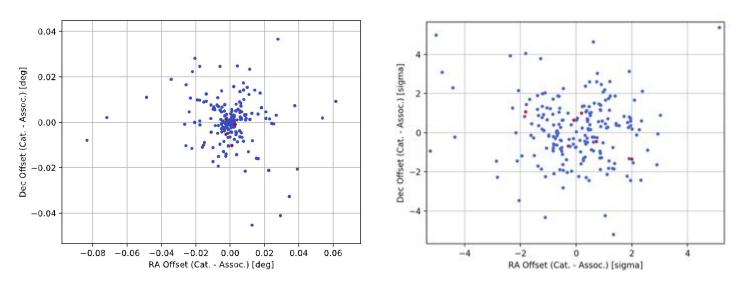
- Centroid position & 68% containment radius (closest match => association)
- No consideration for flux (to avoid biases)


Results:

- Associated: 80.6%
- Unassociated: 19.4%
 - Spurious sources
 - (e.g. fluctuations in diffuse gamma-ray background)
 - Source confusion
 (e.g. multiple overlapping sources detected as single source)

Comparison to Simulation

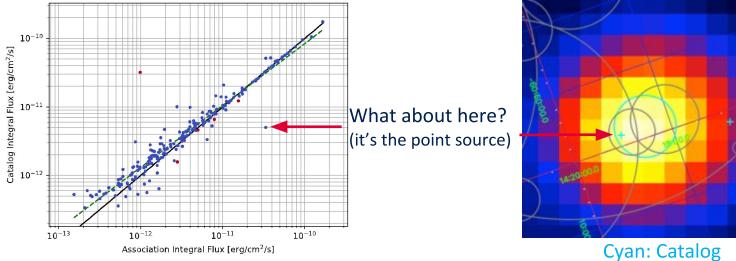
- Integrated source flux (0.1 100 TeV)
- Red dots denote variable sources (*binaries & pulsars*)


May 2018

Comparison to Simulation - Centroid

Distribution of catalog RA,Dec vs. association RA,Dec:

- Most points within 1 bin width (0.02°)
- Most sources reasonably close to the corresponding association

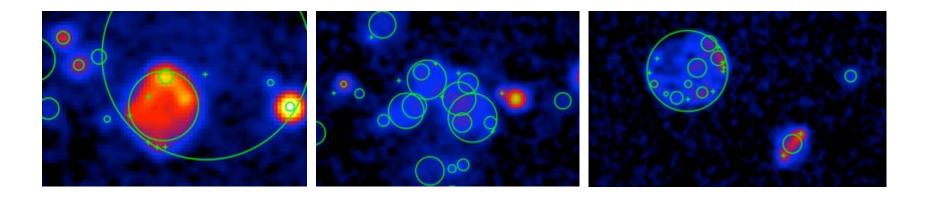

Source Confusion:

- Overlapping sources
- Properly modeling extended sources

May 2018

Overlapping sources

• Another large outlier in the flux plot is actually a multiple association



Issue – Diffuse sources

Multiple detections are a problem for extended structures

- Most sources will NOT be well described as a 'Gaussian' or 'disk'
- How to identify these objects as the same object?

Summary

Latest work:

- Framework exists for detecting & characterizing sources in CTA data
- On the right track (also not the only survey tools being developed)

Things to be Mindful of:

- Cannot try every model combination:
 - Limits on computation time, degrades significances
- Extended, diffuse sources are complicated
 - Can reconstruct as multiple overlapping sources (also seen in HGPS)
 - Need to statistically assess how likely these are to be the same source

Open questions:

- Do uncertainties in gamma-ray background impact detection/characterization?
 - Interstellar gamma-ray background + unresolved sources
 - Can be tested through simulations
- Investigate source detection optimizations
 - Adjust energy range, detection parameters, etc...
- MWL association of sources with other catalogs