Catalogues of galaxy clusters in the era of large X-ray surveys An illustration with SPIDERS

Nicolas Clerc IRAP – Toulouse

Workshop "Treasures Hidden in High-Energy Catalogues" IRAP, Toulouse – 24 May 2018

Clusters of galaxies ; large-scale structure

- Coherent model of structure formation
- Primordial fluctuations grow in expanding universe:
- Dark matter? Accelerated expansion?
- Emergence of cosmic web?
- Clusters of galaxies form last:
- Nature, origin of 1st structures?
- Physical mechanisms entering their formation?

(Planck) CMB = __Primordial fluctuations

Dark matter $\leftarrow \rightarrow$ Gas density (simulation z=0 "today")

Clusters of galaxies as cosmological probes

Physics of X-ray emitting intracluster gas

Large galaxy cluster surveys (X-rays)

Gas density @ z=0 Simulation K. Dolag

eROSITA science book (Merloni+12)

The eROSITA all-sky survey

- Point-source sensitivity: ~ 10^{-14} (0.5-2 keV) and 2 × 10^{-13} (2-10 keV) ergs/s/cm²
- Extended sources sensitivity ~ 3-4 × 10⁻¹⁴ ergs/s/cm²
- Wide-area census of galaxy clusters (10⁵) and active galactic nuclei (3M) in soft+hard X-rays bands

Merloni et al. 2012 – Image credits: MPE, eROSITA_DE, XMM-XXL

Multi-tiered galaxy cluster optical follow-up

Northern hemisphere: SDSS-IV+V

- SPIDERS (PI: A. Merloni, K. Nandra)
 "Tier 0": RASS and XMM sources (mainly AGN and clusters)
 "Tior 1 (8, 2)": aPASS:1 follow up
- "Tier 1 (& 2)": **e**RASS:1 follow-up (extended and point-sources)
- Southern hemisphere: ESO/4MOST+SDSS-V
- 4-m VISTA telescope
- AGN and galaxy cluster surveys
- Operations start 2021

Tier 0 (pre-eRosita): CODEX (RASS+RedMapper)

RASS-faint sensitivity ergs/s/cm²

SDSS ugriz+RedMapper

Goal: secure spectroscopic confirmation of 75% CODEX clusters (=4,500) + statistical velocity dispersion for massive subsamples

- Optimal (balanced) target prioritization
- ~10,000 deg²
- 0.1 < *z* < 0.6 red-sequences
- Median mass $\approx 4 \times 10^{14} M_{sol}$

Pre-eRosita: RM-XCLASS (XCLASS+RedMapper)

- XMM archive "C1" clusters correlated to RedMapper catalogue (Sadibekova+14)
- 278 clusters in footprint (~50-60 deg²)
- XMM-quality characterization
- Lower mass regime (good for scaling relations)
- High target prioritization

RASS, ROSAT, eRASS, XMM-XXL, SPIDERS

RASS faint sources vs. XMM extended

NC et al. 2016

Targeting 50,000 red-sequence galaxies

NC et al. 2016

Demonstration sample (300 deg²)

Pipeline

Clerc et al. 2016

Cluster redshift confirmation

THiHEC Workshop - 24.5.2018 - N.Clerc

Latest public catalogue online: SDSS-DR14

See Value-Added Catalogue description in SDSS Data Release 14 Paper 2018, ApJS 235, 42

573 completed fields

- Selected upon photometric richness greater than 30
- Spectroscopic observations processed, <2% suspicious redshifts
- Visual inspection is crucial
 - Team of ~10 scientists, double inspections
- Specific on-line tool for remote/collaborative use
- A training set for future machine-learning algos.
- Merged catalogue: 520 objects [sdss.org/dr14]
- $\delta z/z \sim 10^{-3}$ (stat.); median ~ 13 gal./system
- Recalculation of distance-dependent quantities

• $L_X, R_{200}, M_{500}(L_X)...$

Visual inspection

Visual inspection

"WebScreening" - online tool for collaborative cluster validation (A. Gueguen, N. Clerc, V. Prasad - MPE)

Treasures in the SPIDERS DR14 catalogue

SPIDERS current status

- RASS/XMM targeting until *eROSITA* sources available
- 2016 SDSS Data Release 13: "demonstration sample"
 - public, 230 clusters, down to low S/N
- 2017 SDSS Data Release 14: 2,500 deg² coverage
 - 520 clusters, richness > 30, median #redshifts/cluster ~ 13
- Next DR in 2019, observations going on.
- Current studies on:
 - Dynamical mass modeling (innovative stacked approaches)
 - *Clustering of clusters (large volume/statistics)*
 - *High-redshift* (*z*~0.6-0.7) *efficiency boost* (*using deeper photometry*)

SDSS-V: pioneering panoptic spectroscopy

- 5-year program begin mid-2020 in both hemispheres
- 3 science programs
 - Milky Way Mapper
 - Black Hole Mapper
 - Local Volume Mapper
- SDSS-V is
 - An observing facility
 - A science survey program
 - A consortium & collaboration
 - In particular, 80k spec-z in 10k X-ray clusters
- See A. Merloni's talk
- More info : arXiv 1711.03234 (Kollmeier, et al.)

Conclusions

- Current and upcoming studies are changing our approach to cluster surveys:
- Statistics new approach to galaxy cluster samples, drawn from a pool of ~10⁵ objects across the entire extra-galactic sky (*eROSITA*)
- Precision measurements accurate redshifts enabling precise positions, masses & mapping of the baryonic cosmic web (SPIDERS)

Thank you!

Data quality & reduction

Modeling the survey

NC et al. 2016 Finoguenov et al. In prep.

SDSS-IV surveys (2014 through 2020)

Maps hundreds of thousands of individual stars in the Milky Way.

Maps 10,000 nearby galaxies. Maps the Universe of galaxies and quasars. Especially quasars.

galaxy evolution & dark matter

dark energy & cosmology

