On the relationship between X-ray, MIR and bolometric luminosities of broad line QSOs

> Francisco J. Carrera (IFCA, CSIC-UC, Spain)

Pedro Fernández-Manteca Silvia Mateos

Treasures hidden in X-ray catalogues, Toulouse, 22 - May - 2018

Instituto de Física de Cantabria

Outline

- Introduction
 - Unified model and X-ray/MIR emission
 - Previous results
- Our sample
- Results: L_X - L_{MIR}
 - Model fitting: Bayesian and 2D uplims
- Comparing to L_{bol} : L_{MIR} / L_{bol} and L_X / L_{bol} vs L_{bol}
- Comparing to Eddington ratio...
- Conclusions

og vF_v (relative

Unified Model

- First-order approach: all AGN intrinsically the same
 - Main difference from orientation w.r.t. line of sight
 - Main engine is central part of AD: rest frame optical/UV
 - X-rays from AD corona: reprocessed (IC)
 - MIR from obscuring torus: reprocessed (thermal)

- Expected then ~1:1 relation between MIR (vL_{v,6µm}) and X-ray lum (L_{X,2-10keV}):
 e.g. Lutz+04 ■, Gandhi+09, Fiore+09, Mateos+15 ••, Shimizu+17...
- But recently flattening at high L_{MIR} : (Stern'15)
 - Surprising within UM: if anything the opposite (receding torus... Simpson'05)
 - But agreement with $\alpha_{OX}\downarrow$ when $L_{opt}\uparrow$ (...Lusso & Risaliti'17...)

- But recently flattening at high L_{MIR} : (Stern'15)
 - Surprising within UM: if anything the opposite (receding torus... Simpson'05)
 - But agreement with $\alpha_{OX}\downarrow$ when $L_{opt}\uparrow$ (...Lusso & Risaliti'17...)

Previous results

- Chen+17: 3488 QSO1 from several samples, X-det and MIR-det
- Flattening fitted with broken power-law (broken line in log-log)
- Discuss effect of X uplims, X-ray abs., <u>X-ray flux limits</u>, SF contamination...

Previous results

- Chen+17: 3488 QSO1 from several samples, X-det and MIR-det
- Flattening fitted with broken power-law (broken line in log-log)
- Discuss effect of X uplims, X-ray abs., <u>X-ray flux limits</u>, SF contamination...

Our sample

- We wish to get the largest possible sample of luminous objects
 - SDSS DR12 QSO Paris+16: luminous objects, large coverage
 - Good z, z<4, |b|>20deg, type 1: FWHM_{CIV or CIII} or MgII>1500km/s
 - SDSS DR9: no neighbours within 5"
 - Kozłowski'17: L_{bol} , M_{BH} from SDSS phot., spectra
 - UNWISE (Lang+14):
 - ~AllWISE "forced photometry" on SDSS DR10 sou.
 - Inter/extra-polating W2,W3,W4 $\Rightarrow vL_{v,6\mu m} \equiv L_{MIR}$ or uplims
 - 3XMM DR5 (Rosen+17): X sou. cat.
 - pn exposure time >5ks
 - SDSS sources within 15arcmin of 3XMM DR5 pointing
 - FLIX: flux on given position "forced photometry"
 - Using flux in 0.5-4.5keV \Rightarrow L_X 2-10keV or uplims

Treatment of upper limits

- Treatment of upper limits:
 - All sources have L_{bol} and M_{BH} (by design), they are all real
 - For X and MIR:
 - If flux-1 σ error bar *S*- ΔS >0: detection
 - If $S \Delta S \leq 0$: upper-limit
 - If $S < \mathbf{0} \Rightarrow S = \mathbf{0}$, keeping ΔS
 - Redistributing all the probability to >0
 - But fits done in log-space:
 - Sampled log(L) using truncated gaussian for flux ~ gaussian !
 - Also done fits using "flat" up. lims for upper-limits and no difference

Our sample

- 3663 QSO1:
 - 2361 X-det and MIR-det
 - 238 only MIR-det
 - 900 only X-det
 - 164 X-nodet & MIR-nodet

Model fits

- Fitting a straight line in log-log:
 - Errors on both coordinates
 - Large dispersion

- Kelly'07: Bayesian method (IDL, python K07):
 - Fits a straight line
 - Taking into account (gaussian) errors in X and Y
 - Allowing for intrinsic dispersion in the data σ
 - Can handle upper limits in Y
 - Uncertainties from MCMC: median and 1σ percentiles

What is going on?

- Several possibilities:
 - Both increasing but MIR faster
 - X-ray flattening but MIR not
 - Both flattening but MIR slower
 - ...
- Need to compare with the origin of both:
 - Kozłowski'17 SDSS: L_{bol} from $L_{1350}, L_{3000}, L_{5100}$ using bol. corr. (Richard+06)
 - $L_{MIR}/L_{bol} \approx$ covering factor
 - $-L_X/L_{bol} \sim 1/\kappa_{bol}$
 - Also $\log(M_{BH}/M_{\odot}) \in [7.2, 10.7]$

• Not significant $P(H_0)=0.31$

Our hiSNR sample

- 3663 QSO1:
 - 581 SNR>4 X and MIR
 - 813 only SNR>4 MIR
 - 1585 only SNR>4 X

Conclusions

- Large sample of 3663 optically selected type 1 QSOs:
 X-ray and MIR luminosities and upper limits
- Confirm flattening of L_X vs. L_{MIR} at the highest L_{MIR} – Using upper limits in X,MIR even slightly flatter
- Comparing to the input optical/UV radiation:
 - $-L_{\rm MIR}/L_{bol}$ flat: ~constant or weakly decreasing covering factor ...Mateos+17, Brown+18
 - $-L_X/L_{bol}$ decreases with L_{bol} as in phys. models
- Can also check for dependences on Edd. ratio...

 $-L_X/L_{bol}$ vs Edd. Ratio steeper than previous results (Lusso+12, Fanali+13)